Soft Ripened White Mold Cheeses
The Science and the Art

Dairy Australia Webinar 2017

Gianaclis Caldwell
Summary

• The three core cheesemaking technologies for bloomies
 ─ Lactic
 ─ Rennet
 ─ Stabilized
• Food Safety Reminder
• The key factors to remember during production
• Buffering review
• pH goal benchmarks
• Starter culture options
• Surface molds and yeasts
• The influence of rennet
• Moisture and pH at hooping/forming
• The role of salt
• Affinage
The Three White Mold Technologies

• Lactic
 – Examples: Most French soft ripened goat cheeses
 – Characteristics: Firm paste, thin rind with some softening around rind. Crumbly. Small format

• Make in Nutshell:
 – Little to no rennet
 – Long coagulation to low pH, about 4.4-4.6
 – Wet, acidic curd drained in bags or open meshed small forms
 – Bag drained curd is often reformed into wheels
The Three White Mold Technologies

• Rennet Traditional—softened paste
 – Traditional Camembert and Brie
 – Soft, runny paste when ripe

• Make in a Nutshell:
 – Quick rennet coagulation (relatively)
 – Little to no stirring
 – Large wet curds at hooping
 – pH at dehooping <5.0
The Three White Mold Technologies

• Rennet – stabilized paste
 – Exported and mass produced Camembert and Brie
 – Characteristics: Soft paste with long shelf stability.
 – Artisans can use stabilization techniques too!

• Make in a Nutshell:
 – Quick rennet coagulation
 – More stirring of curds and smaller curd size
 – Possible other stabilization techniques
 • Washing curd
 • Adding fat
Don’t forget these are “High Risk” Cheeses!

- Both pasteurized and raw versions are considered high risk.
- Post contamination potential
- High surface pH – sometimes 8.0!
- Keep in mind when designing production flow
- Address in food safety plans
The Keys to All Bloomies

• Buffering
 – Milk’s natural buffering
 – How you manipulate it through pH development
• Surface de-acidification – raising the pH
 – How you manipulate it with yeasts
 – How you manipulate it with molds
 – How salt manipulates the yeasts and molds
• Softening of the paste
 – How the surface flora change the interior
 – How the environment helps
It’s all about Buffering

• Buffer Basics
 – Compounds that have the ability to resist changes in pH (free hydrogen ions)
 – Buffering Capacity of milk
 • The only reason we can make cheese
 • The better the milk’s buffering capacity the more time you have to make all cheeses
Milk’s Powerful Buffering Ability

The Casein Micelle

- Caseins the major buffer in milk
- Calcium Phosphate as Colloidal Calcium Phosphate (CCP) – Insoluble
 - Pre-bound ionic calcium
 - Usually 2/3 of the total CP in milk
 - Exists in milk in greater quantity in milk than would be normal in another solution of the same pH
 - Combines with lactic acid to form calcium lactate
Comparison of Benchmarks

<table>
<thead>
<tr>
<th></th>
<th>Lactic</th>
<th>Traditional Rennet</th>
<th>Stabilized</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH at renneting</td>
<td>6.00 – 6.30</td>
<td>6.10-6.30</td>
<td>6.40-6.55</td>
</tr>
<tr>
<td>pH at unmolding</td>
<td>< 4.45</td>
<td>4.65-4.85</td>
<td>4.95-5.20</td>
</tr>
<tr>
<td>Ca/FFDM (mineralization)</td>
<td><0.4%</td>
<td>0.8-1.7%</td>
<td>1.8-2.3%</td>
</tr>
<tr>
<td>Best Before</td>
<td>2-9 weeks</td>
<td>6-10 weeks</td>
<td>7-15 weeks</td>
</tr>
</tbody>
</table>
Starter Culture Choices

- **Mesophiles**
 - Produces more acid by hooping time
 - Less minerals in curd
 - Less buffering
 - Aroma

- **Thermophiles – TA 50**
 - Keeps the pH higher at hooping
 - More minerals in curd
 - More buffering
 - Exopolysaccharides
 - Texture
Comparison of Cultures and Rennet Used

<table>
<thead>
<tr>
<th></th>
<th>Lactic</th>
<th>Traditional Rennet</th>
<th>Stabilized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td>Mesophilic</td>
<td>Mesophilic and Thermophilic</td>
<td>Thermophilic</td>
</tr>
<tr>
<td>Rennet (ml/100L, 26 gal)</td>
<td>4-12</td>
<td>16-25</td>
<td>25-40</td>
</tr>
<tr>
<td>Geotrichum</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. camemberti</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>
Yeast’s Role

• Deacidification
 – Vary in rate of surface deacidification
 – Vary on salt tolerance

• Gas Production Inside
 – Vary on whether gas is produced
 – Eyes inside are helpful for many traditional bloomy types

• Fat and Protein breakdown
 – Vary on ability to help soften the cheese
 – Vary on ability to produce other flavors
Comparison of Yeast Options

<table>
<thead>
<tr>
<th>Yeast Option</th>
<th>Ferments on surface</th>
<th>Ferments inside plus gas</th>
<th>Neutralizing surface pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL- Kluyveromyces lactis</td>
<td>Yes</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td>CUM – Candida utilis mesophile</td>
<td>Yes</td>
<td>Yes, glucose only</td>
<td>+++</td>
</tr>
<tr>
<td>DH – Debaryomyces hansenii</td>
<td>Yes</td>
<td>No</td>
<td>++</td>
</tr>
</tbody>
</table>
Geotrichum’s Role

- Further de-acidification of rind
- Aroma
- Rind thickness
Comparison of Geotrichum Options

<table>
<thead>
<tr>
<th></th>
<th>Appearance</th>
<th>Growth Rate</th>
<th>Salt tolerance</th>
<th>Flavor</th>
<th>Lipolysis Proteolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geo 15</td>
<td>Yeast like, cream</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>4x < PC</td>
</tr>
<tr>
<td>Geo 13</td>
<td>Intermediate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>“</td>
</tr>
<tr>
<td>Geo 17</td>
<td>Mold like, white</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>“</td>
</tr>
</tbody>
</table>
Penicillium camemberti’s Role

• Rind texture
 – Choice of PC influences texture

• Rind thickness
 – Each PC grows at a different thickness and height

• Rind aroma and paste flavor
 – Different aroma compounds produced
 – Different flavor compounds produced

• Paste texture
 – Draws lactate from paste to deacidify and allow for softening
Comparison of PC (Choozit 10d)

<table>
<thead>
<tr>
<th></th>
<th>Whiteness</th>
<th>Growth Rate</th>
<th>Thickness</th>
<th>Proteolysis</th>
<th>Lipolysis</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP 6</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Neige</td>
<td>++</td>
<td>+</td>
<td>++++</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>PC VB</td>
<td>++</td>
<td>+</td>
<td>++++</td>
<td>++++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>SAM 3</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>Anti mucor</td>
</tr>
</tbody>
</table>
Rates of Dosing PC to Geo

<table>
<thead>
<tr>
<th>Yeasts</th>
<th>LACTIC SOFT CHEESE</th>
<th>MIXED SOFT CHEESE</th>
<th>STABILIZED SOFT CHEESE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOOZIT® DH</td>
<td></td>
<td>1 dose* for 1000L of milk</td>
<td></td>
</tr>
<tr>
<td>CHOOZIT® KL 71 - CUM</td>
<td></td>
<td>2 doses for 1000L of milk</td>
<td></td>
</tr>
<tr>
<td>Geotrichum candidum</td>
<td>CHOOZIT® GEO 13 - 15 - 17</td>
<td>1-2 dose(s)** for 1000L of milk</td>
<td>2 doses* for 1000L of milk</td>
</tr>
<tr>
<td>Penicillium camemberti</td>
<td>CHOOZIT® PC 02 - 12 - 22 - HP 6 - NEIGE - SAM 3 - VS - VB</td>
<td>2 to 5 doses*** for 1000L of milk</td>
<td></td>
</tr>
</tbody>
</table>
Ratio of Dosing PC to Geo

Graph showing the ratio of dosing PC to Geo with categories such as 100% PC, 70/30 PC/GEO, 50/50 PC/GEO, 30/70 PC/GEO, and 100% GEO.
How Rennet Affects Bloomies

• More rennet
 – More stirring
 – More loss of whey early
 – More minerals retained

• During aging
 – Small role in proteolysis

• The Type of Rennet
Resolubilization Review

• Several key pH/acid goals MUST be achieved if a soft texture is desired by the end of aging
 – High moisture at drainage means....
 • Loss of minerals during draining which means...
 • Loss of buffering capacity of curd
 – Low pH of 4.7-ish means...
 • Presence of lots of lactate (lactic acid) to feed yeasts first then white molds which means...
 • Consumption of lactic acid by white mold raises the pH by both acid consumption and ammonia production which means...
 • Casein returns to the point (above about 5.1) when it “likes” water again
Moisture at Hooping - Lactic

- Lactic
 - Tremendous loss of minerals before hooping
 - Low buffering capacity
 - Low pH
 - High lactate content
 - Crumbly texture
Moisture at Hooping – Rennet Trad.

• Rennet Traditional
 – Wet curd at hooping = loss of minerals during draining = loss of buffering capacity
 – Slightly higher pH = faster time to surface flora development
 – Texture can resolubilize
Moisture at Hooping – Stabilized

- Curd drier at hooping, higher pH
 - Higher buffering capacity
 - Sweeter curd
 - Faster rind growth
 - Firmer paste
 - Longer aging
The Role of Salt in Bloomies

- **Drainage**
 - Helps draw moisture from curd
- **Rind Growth**
 - Influences PC vs Geo
 - Limits other molds
- **Flavor**
- **Preservation**
- **Goal Salt Amounts**
 - 1.7 – 1.8% of weight of curd
 - Or brine 30 – 60 min.
Aging Needs

• Drying phase
 – Yeasts, Geo
 – 24-48 hours
 – 54-64 F
 – Room humidity about 80%
 – Small fan helpful
Aging Needs

- Aging phase I
 - 45-60F
 - 85 - 95 % RH
 - Turn daily
 - Lots of air exchange
Aging Needs

• Aging phase II
 – Wrap when mold growth is even and not too thick
 – Continue to age at 45-55F
 – Same humidity
Surface Invaders

- Historical perspective – is it contaminated or is it traditional?
- Sources of unwanted fungi:
 - Dairy farm
 - Make room
 - Aging room
- Petri-film yeast and mold plates to monitor milk
- Worker cleanliness
 - Hair
 - Street clothes
- Surface cleaning
- Air cleaning
 - Ozone
 - UV
Sources

Use of ozone to reduce molds in a cheese ripening room.
Serra R¹, Abrunhosa L, Kozakiewicz Z, Venâncio A, Lima N.

Microorganisms 2017, 5(3), 42; doi:10.3390/microorganisms5030042

Review

Diversity and Control of Spoilage Fungi in Dairy Products: An Update
Lucille Garnier 1,2Orcid, Florence Valence 2 and Jérôme Mounier 1,*
• gianaclis@gmail.com
• www.gianacliscaldwell.com
• www.pholiafarm.com
• Facebook, YouTube