Calcium addition to and removal from milk and milk products

Hilton Deeth

NCDEA Webinar 23 June 2015
Outline

- Significance of calcium in milk
- Types of calcium in milk
- Calcium addition
 - Calcium fortification
 - Heat-induced gelation & coagulation of milk
 - Whey protein aggregation and gelation
 - Removal of fat from whey
 - Fouling and sediment formation in high-heated milk
- Calcium removal
 - Prevents rennet-induced coagulation
 - Delays age gelation of UHT milk
 - Improves milk protein concentrate stability
 - Improves skim milk powder stability
 - Reduces foaming
 - Allows formation of iron-milk protein complexes
Significance of calcium

- Milk is supersaturated in calcium
- Due to presence in the casein micelle as colloidal calcium phosphate (CCP),
- Excellent carrier of calcium for the newborn.
- Major nutritional benefit of milk and milk products.
- Important in many functional properties of milk and milk products.
- But it’s a 3 bears situation – sometimes too much, sometimes too little, sometimes just right
Types of calcium

- Total calcium in milk is about 120 mg/100 mL (0.12% or 30 mM)
- 2/3 (80 mg/mL; 20 mM) is bound into the casein micelle
 - Insoluble and non-ionic
 - Mostly colloidal calcium phosphate - the glue that holds the casein micelle together
- 1/3 (40 mg/mL; 10 mM) is in the serum
 - Soluble
 - 32 mg/mL (18 mM) is non-ionic
 - 8 mg/mL (2 mM) is ionic
Calcium addition
Calcium fortification of milk

- Despite the high calcium level in milk, there is interest in adding calcium to milk
- This is tricky because:
 - most soluble calcium salts, like calcium chloride, make milk unstable to heat
 - insoluble salts, like calcium carbonate, tend to sediment out of the milk
- Commercially, insoluble salts are usually added, as very fine powders
- Also, milk minerals and a marine mineral mix are used
- One unique calcium salt is Gadocal K® (calcium potassium citrate) which is soluble but stable to heat
Heat- & calcium-induced gelation and coagulation of milk

- Adding a soluble calcium salt (e.g. calcium chloride) and heating milk to ~70°C causes either:
 - a gel (like yogurt) at low concentrations (< 0.3%) of calcium chloride (~0.8 % or 20 mM Ca)
 - forms an attractive desert when flavoured and sweetened
 - a coagulum (like cottage cheese or paneer) at higher concentrations (> 0.3%), with whey separation
 - a milk tofu? (tofu is made by heating soymilk with calcium or magnesium salts)
 - Can be used like paneer in Indian-style dishes

- Neither taken up commercially - yet
Whey protein gelation

Hot gelation

✿ Over a certain protein concentration (~7%), whey protein concentrate (WPC) or whey protein isolate (WPI) denatures and forms a gel when heated to >70°C.

✿ Calcium ions up to ~ 20 mM (0.3% calcium chloride) strengthen this gel by interacting with/cross linking the protein.

Cold gelation

✿ Adding calcium to whey proteins preheated to 70-90°C forms a cold-set gel.
Removal of fat from whey – the thermocalcic method

- Whey contains ~0.5% fat
 - The fat is in small fat globules and membrane material (skim membrane and milk fat globule membrane), which contains polar lipids, e.g., phospholipids
 - The fat causes whey to be cloudy and interferes with ultrafiltration of whey and properties of the whey protein concentrate, e.g., foaming
- The fat can be removed adding calcium chloride (0.3 – 1.2%) and heating (55°C) at pH ~7.5
- Precipitates out > 90% of polar lipids
Fouling and sediment formation in high-heated milk

- High-temperature heating (e.g. UHT) of milk with high ionic calcium causes fouling of heat exchangers and sediment in the heated milk.
- A classic example is goats milk; calcium chelating salts such as citrate or phosphates have to be added before UHT processing.
- In some countries, citrate is added to all milk before UHT processing to minimise fouling.
Fouling in UHT milk with added calcium chloride

Fouling of raw cow’s milk with 0 mM (x), 0.7 mM (♦), 2.0 mM (■) and 3.4 mM (▲) added calcium chloride during processing at 135°C for 4 s (Note: the lower the OHTC, the more fouling)
Fouling of cow’s and goat’s milk during UHT processing
Calcium removal
Prevents rennet-induced coagulation

- Rennet coagulation occurs in two stages:
 - Proteolytic splitting of kappa-casein to \(para-\kappa \)-casein
 - Aggregation of the \(para \)-caseins into curd
- Step 1 does not require calcium
- Step 2 can only occur if ionic calcium is present
- Calcium chloride (~0.1%) is often added to milk during cheese making to enhance coagulation of step 2
- Conversely, coagulation of renneted milk can be prevented if the calcium is made unavailable (by removal or chelation) before the rennet is added
- Renneted, non-coagulated milk protein can be made into a powder and used to improve the body to cheese such as processed cheese if calcium is added back
Delays age gelation

• Age gelation occurs when UHT milk becomes viscous and forms a gel during storage
• It limits the shelf-life of UHT milk
• The role of calcium is unclear but:
 • Addition of sodium hexametaphosphate (SHMP, polyphosphate, Calgon) which binds calcium greatly delays gelation
 • Like rennet action – the 1st step is proteolysis and the 2nd step is curd/gel formation
• SHMP affects only the second step
Improves functional properties of milk protein concentrate

- Milk protein concentrate (MPC) is produced by membrane filtration of skim milk
- It contains all the proteins of milk – casein and whey proteins
- Protein concentration varies from 40 to 90%
- The ionic calcium level increases with protein concentration; MPC90 has ~ 5 mM Ca^{++} (cf milk at ~2 mM) and is unstable to heat.
- Removal of calcium by dialysis, ion exchange or adding chelating agents:
 - Markedly improves the heat stability
 - Improves emulsification properties
 - Improves solubility
Improves skim milk powder stability

- The heat stability of skim milk powder is important for several applications
- Can be improved by intense heating of the skim milk before evaporation and drying
- However, high-heat powders are not suitable for some applications
- Removing calcium by from skim milk before making medium- and low-heat powders improves its heat stability to in-container sterilisation
- Calcium can be reduced by adding chelating agents (phosphates, citrate) or ion exchange
Decreases foam stability

- Sometimes foaming is a problem and ways of reducing it are beneficial
 - For example, shaking reconstituted infant formula
- We found adding calcium chelating agents (citrate, SHMP, EDTA) reduces foam stability

Foam stability of reconstituted skim milk powder with added trisodium citrate (TSC)
Allows formation of iron-milk protein complexes

- Iron deficiency anaemia is one of the most widespread health disorders throughout the world
- Fortification of milk with iron may alleviate the problem
- Adding iron to milk is tricky as it causes oxidation and rancid flavours
- If calcium is removed from milk, e.g., by ion exchange, the casein micelle collapses (the glue, colloidal calcium phosphate, is removed) – skim milk loses opacity
- If iron, in the form of a salt like ferric chloride, is added, the iron binds strongly to the caseins
- The iron-protein complex can be made into a powder and added to foods to fortify them with iron
- NZ patent
Conclusions

• Calcium is an important nutrient in milk and milk products
• Calcium, particularly in the ionic form, binds strongly to milk proteins and is important for several functional properties
• Addition of calcium is sometimes desirable or essential – aids gelation, coagulation
• Removal of calcium is sometimes beneficial – prevents fouling, improves heat stability

Thank you for your attention