ESL milk processing

Hilton Deeth

A Dairy Australia NCDE Webinar,
6 September 2017
What is ESL milk?

- Extended-shelf-life milk: keeps longer than pasteurised milk but not as long as UHT milk
- Can be produced by non-thermal technologies, with or without some thermal treatment, or by thermal treatment alone
- Non-thermal technologies used:
 - Microfiltration – widely commercialized
 - Bactofugation – has been commercialised, e.g. in South Africa
 - Pulsed electric field (PEF) technology – proven effective in research only
- Microfiltration and bactofugation remove bacteria while thermal processing and PEF destroy the bacteria (and leave the dead bacteria in the milk)
About ESL milk

• Must be stored refrigerated
• Should have a similar taste to pasteurised milk
• Mostly packaged under ultra-clean conditions but can be packaged aseptically
• Keeps for 30 days or longer
ESL milk by microfiltration
Microfiltration – a membrane filtration technology

Some points about membrane technologies:

1. They use cross-flow filtration rather than dead-end filtration
2. They use semi-permeable membranes
3. Different technologies use membranes with different pore sizes

<table>
<thead>
<tr>
<th>Membrane technology</th>
<th>Pore size (μm)</th>
<th>Approx MW range of material filtered out (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfiltration</td>
<td>0.1-10</td>
<td>>100,000 - 3,000,000</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>0.001-0.1</td>
<td>10,000-150,000</td>
</tr>
<tr>
<td>Nanofiltration</td>
<td>0.0001-0.001</td>
<td>150-20,000</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td><0.0001</td>
<td><300</td>
</tr>
</tbody>
</table>
The membrane technologies

4. Different membranes filter out different milk components

<table>
<thead>
<tr>
<th>Membrane technology</th>
<th>Milk components retained by membrane</th>
<th>Milk components that permeate the membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfiltration (MF)</td>
<td>- “Loose” membrane: Bacteria, somatic cells, fat globules</td>
<td>All proteins, lactose, salts, water</td>
</tr>
<tr>
<td></td>
<td>- “Tight” membrane: casein micelles</td>
<td>All proteins except casein micelles, lactose, salts, water</td>
</tr>
<tr>
<td>Ultrafiltration (UF)</td>
<td>As above plus all proteins, large peptides</td>
<td>Small peptides, lactose, salts, vitamins, amino acids, water</td>
</tr>
<tr>
<td>Nanofiltration (NF)</td>
<td>As above plus lactose, most mineral salts, vitamins, small peptides and amino acids</td>
<td>Some monovalent ions (potassium & sodium), water</td>
</tr>
<tr>
<td>Reverse osmosis (RO)</td>
<td>All particulate matter and solutes</td>
<td>Water only</td>
</tr>
</tbody>
</table>
Bacteria removal by microfiltration – ESL milk production

- Used now in several countries including Australia
ESL milk production by microfiltration

Steps involved:

1. Separation of whole milk to give cream and skim milk
2. Microfiltration of skim milk using 0.8-1.4 µm membrane to give permeate (wanted) and retentate (unwanted)
3. Homogenisation & heat treatment (typically 125°C for 4-5 s) of cream
4. Heated cream and skim milk permeate recombined
5. Recombined mixture pasteurised (≥ 72°C for 15 s)
6. Resulting ESL milk cooled & packaged under very clean conditions
7. ESL milk stored refrigerated
ESL milk by microfiltration (the Bactocatch® process)
Shelf-life of microfiltered ESL milk packaged under ultra-clean conditions

- **≥ 20 days**
- can be contaminated after the membrane treatment
- ESL milk spoils due to:
 - growth of post-processing contaminants (PPC) and/or
 - growth of psychrotrophic bacteria which pass through membrane
 - Microfiltration reduces bacterial count by 4-5 logs – similar reduction to pasteurisation but it reduces spores while pasteurisation does not.
- PPC can enter the milk from the filler equipment, air and packaging material
 - steps have to be taken to eliminate contamination sources to achieve long shelf-life
ESL milk by bactofugation
Bactofugation

- Removes bacteria (and somatic cells) by centrifugation
- Referred to as 'bactofugation' because the commercial equipment manufactured by Tetra Pak is marketed under the tradename of *Bactofuge®*
- Uses a centrifugal force of ~9,000 g
- Separation of the bacteria is based on specific gravity (SG)
 - Bacterial spores have SGs of 1.30-1.32 g/mL
 - Vegetative bacterial cells have SGs of 1.07-1.12 g/mL
- milk has an SG of 1.028-1.038 g/ml; therefore difficult to remove vegetative bacterial cells from milk
Bactofugation 2

- Reduces total bacterial count in milk by 1.3 logs or ~95% (less than MF) – more with two centrifuges in series
- Removes >97% of spores; around 2-log reduction
- Without additional heat treatment, bactofugation extends shelf-life of drinking milk by 4-5 days
ESL milk by bactofugation

- ESL milk processing by bactofugation is similar to that by microfiltration
- Cream is first separated from whole milk
 - Cream removal also reduces the viscosity and increases rate of removal of bacteria
 - ~30% of the sporeforming bacteria move with the cream phase, hence need to first separate the cream
 - Cream is heat treated as with microfiltration
- Skim milk is centrifuged and centrifugate (unwanted) continuously removed
- Centrifuged skim milk is recombined with the heated cream
- Recombined milk is heat-treated (at pasteurisation temperatures of higher)
- Packaged and stored refrigerated as per microfiltered ESL milk
- Shelf-life ≥ 20 days, depending on final heat treatment and packaging used
ESL process using bactofugation

Figure 1 Schematic representation of bacterial clarification of milk by centrifugation with concentrate recycling. 1, Milk feed; 2, bacterially clarified milk, discharge; 3, recycled centrifugate; 4, discontinuously discharged bacterial concentrate. (Courtesy of Westfalia Separators Australia Pty Ltd.)
ESL milk by heat treatment only
ESL milk produced by heat treatment

• Produced in several countries including Australia
• Occupies substantial percentage of milk market in some European countries
• Considerable volumes of ESL milk are exported from Australia
Common heat treatments used for milk

- **Thermisation**
 - 60-65°C for 5-15 s

- **Pasteurisation**
 - 72°C for 15 s (minimal conditions)

- **ESL (Extended Shelf Life) processing**
 - 120-135°C for 1-10 s

- **UHT (Ultra High Temperature) processing**
 - 138-145°C for 2-10 s

- **In-container sterilisation**
 - 110-120°C for 10-30 min

Increasing severity
<table>
<thead>
<tr>
<th></th>
<th>Pasteurisation</th>
<th>ESL</th>
<th>UHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating conditions</td>
<td>72-82°C for 15-30 s (continuous, HTST)</td>
<td>Commonly 120-130°C for 2-8 s</td>
<td>Commonly 138-142°C for 2-5 s</td>
</tr>
<tr>
<td>Bacteria destroyed</td>
<td>All non-spore-forming pathogens;</td>
<td>All non-spore-forming bacteria including thermodurics;</td>
<td>Almost all bacteria</td>
</tr>
<tr>
<td></td>
<td>Most non-spore-forming spoilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria not destroyed</td>
<td>Non-spore-forming thermodurics and spores</td>
<td>Spores with high heat-resistance</td>
<td>Very highly-heat-resistant spores</td>
</tr>
<tr>
<td>Shelf life</td>
<td>10-20 days (refrigerated)</td>
<td>30-60 days with ultra-clean packaging (refrigerated)</td>
<td>6-12 months (at room temperature)</td>
</tr>
<tr>
<td>Cause of spoilage</td>
<td>Post-processing contaminants (PPC),</td>
<td>PPC and psychrotrophic sporeformers</td>
<td>Rarely bacterial; bitterness, gelation, sedimentation, fat separation</td>
</tr>
</tbody>
</table>
Shelf-life of ESL milk packaged under ultra-clean conditions

• 30-60 days
• can be contaminated after the heat treatment
• ESL milk spoils due to:
 • growth of post-processing contaminants and/or
 • growth of psychrotrophic spore-forming bacteria
• Post-processing contaminants can enter the milk from the filler equipment, air and packaging material
 • steps have to be taken to eliminate contamination sources, e.g.:
 • sterilisation of filler (e.g., steam, hydrogen peroxide [H₂O₂])
 • sterilisation of packaging material (e.g., H₂O₂)
 • use of sterile (HEPA-filtered) air in filler
Shelf-life of ESL milk if packaged aseptically

- Shelf-life of up to 90+ days
- Should not be contaminated after the heat treatment
- Spoilage should be due only to growth of psychrotrophic spore-forming bacteria whose spores are not killed by the heat treatment
How important are the heating conditions for the shelf-life of ESL milk

• It doesn’t matter much what heating conditions are used if post-processing contamination occurs
 • If PPC is prevented, even milk pasteurised at 72°C for 15 s will last for 40+ days

• So let’s now assume no PPC!

• Then bacterial spoilage can only occur by sporeformers whose spores survive the heat treatment **AND** can grow at refrigeration temperature, i.e., psychrotrophic sporeformers
ESL aim 1: To kill all non-spore-formers & spores of psychrotrophic spore-formers

- Heating at ≥ 120°C kills all vegetative bacteria and most spores; main concern are spores of psychrotrophic sporeformers
- Several types of sporeformers can be psychrotrophic, i.e., grow at refrigeration temperatures (≤ 7°C)
 - They occur in raw milk in low numbers (< 100/mL)
 - *Bacillus cereus, B. circulans, Paenibacillus* are the most common
 - *B. cereus* is the main problem
 - some strains are psychrotrophic
 - some strains are pathogenic
 - spores of some strains are quite heat-resistant
- Hence a major aim for ESL processing is to kill spores of psychrotrophic sporeformers
 - Known to be killed at ~134°C for ~4 s (or equivalent temp-time combos)
Taste of ESL milk

- Taste depends almost entirely on the heat treatment applied
- If produced by **heat treatment only**, ESL milk has a slight cooked taste but most consumers cannot distinguish it from pasteurised milk
 - Extent of chemical changes (like production of cooked flavour compounds) in milk depends on the heating conditions
 - Cooked flavour compounds are formed from the whey protein β-lactoglobulin and also the milk fat globule membrane
 - Extent of denaturation of β-lactoglobulin is a good indicator of cooked flavour production
 - Common ESL processes denature the β-lactoglobulin by 30 - 80%; this should be minimised for good flavoured ESL milk
- If produced by a **non-thermal process + a heat treatment**
 - Taste will be less cooked and denaturation of β-lactoglobulin will be less than in thermally produced ESL milk
 - Only the cream is treated at high temperature – cream represents only ~6% of the milk protein
ESL aim 2: To have flavour similar to pasteurised milk

Fact 1: For the same bacterial kill, the higher the temperature the better the flavour (less chemical change)

- For ESL milk (also UHT milk), heating at high temperatures for short time produces a better flavour than heating at lower temperature for a longer time

Fact 2: Heated milk in which the whey protein, β-lactoglobulin is denatured more than ~50% has a noticeable cooked flavour

- Therefore the best flavoured ESL milk will be produced at high temperature for a short time to denature the β-lactoglobulin by \leq 50%
Optimum heating conditions for ESL milk

Requirements:

1. To kill spores of psychrotrophic bacteria
 - equivalent conditions to ~134°C for 4 s
2. Heating conditions to denature ≤ 50% β-lactoglobulin
3. Heating conditions to be sub-UHT conditions
 - the minimum UHT heating conditions kills highly-heat-resistant spores by 9 logs (i.e., to 1/1000,000,000 of the initial count)
 - Known as B* of 1 (or F₀ of 3)
 - For ESL, recommend B* of ≥ 0.3 (F₀ of ≥ 1)
Temperature–time combinations for optimum ESL heating
Some ESL temperature-time combinations: Chemical and bacterial effects

<table>
<thead>
<tr>
<th>Heating conditions (°C/ s)</th>
<th>B*</th>
<th>β-Lactoglobulin denaturation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/9</td>
<td>0.03</td>
<td>61</td>
</tr>
<tr>
<td>127/5</td>
<td>0.09</td>
<td>55</td>
</tr>
<tr>
<td>134/4</td>
<td>0.32</td>
<td>56</td>
</tr>
<tr>
<td>136/2</td>
<td>0.26</td>
<td>44</td>
</tr>
<tr>
<td>138/2</td>
<td>0.40</td>
<td>45</td>
</tr>
<tr>
<td>140/1</td>
<td>0.32</td>
<td>34</td>
</tr>
<tr>
<td>145/0.3</td>
<td>0.32</td>
<td>24</td>
</tr>
</tbody>
</table>

- B* too low, β-Lg denat’n too high
- Commonly used conditions for ESL
- Conditions for killing psychrotrophic spores
- Reasonable for ESL
- Minimum conditions for ESL in USA
- Recommended for ESL by some companies
- Excellent for ESL if can be achieved

Preferred for ESL milk:
- B* ≥ ~0.3
- β-Lactoglobulin denaturation (%) ≤ 50%
 - Undenatured β-lactoglobulin (measured) of ≥ ~1600-1800 mg/L
What do we mean by “temperature–time combinations”

• Refers to the highest temperature reached and the time the milk spends in the holding tube.

• If the heat input in the holding tube accounts for almost all of the heat input, then the temperature–time conditions of the holding tube can be used to estimate it.

• This is the case for direct heating plants (steam injection or infusion)
What do we mean by “temperature–time combinations” (cont)

- In many plants, the milk obtains heat before, during and after the holding tube
- This affects both the bacterial kill and the amount of denaturation of β-lactoglobulin
- The case with **indirect** heating plants (plate or tubular)
Comparison of direct and indirect ESL systems with the same $F_0 (0.22)$

Direct: 135°C for 0.5 s
Indirect: 127°C for 1 s

Rysstad & Kolstad 2006
Summing up – ESL milk produced by heating alone

Optimum conditions to produce ESL milk with a long shelf-life and with good flavour

- Use direct heating at ~134-145°C for 4-0.3 s
- And package aseptically

Historical and practical considerations

- Less severe heating conditions, e.g., 125-130°C for 8-2 s with ultra-clean packaging has been, and is being, used successfully by many companies throughout the world, but occasional failures due to PPC do occur
- In some countries, heating at ≥ 135°C is defined as UHT heating and may not be accepted for ESL processing. Hence very high temperatures for a short time may not be an option
A commercial

All this and much more can be found in this recently released book.
Thank you for your attention ☺